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Summary

Motivation: Prediction of alternative splicing has been traditionally based on the
study of expressed sequences, helped by homology considerations and the analysis of
local discriminative features. More recently, machine learning algorithms have been
developed that try avoid or reduce the use of a priori information, with partial
success.
Objective and method: With the aim of developing a fully automatic procedure of
recognition of alternative splicing events based only on the genomic sequence, we
first introduce a virtual genetic coding scheme to numerically modeling the informa-
tion content of sequences in an effective way, then we use time series analysis to
extract a fixed-length set of features from each sequence and finally we adopt a
supervised learning method, namely the support vector machine, to predict alter-
native splicing events.
Results: On the base of real C. elegans data, we show that it is possible within this
purely numeric framework to obtain results better than the state of the art, without
any explicit modeling of homology or positions in the splice site, nor any use of other
local features.
Conclusion: The virtual genetic coding together with time series analysis allows us to
introduce an effective and powerful sequence coding scheme, that may be useful in
various areas of genomics and transcriptomics.
# 2008 Elsevier B.V. All rights reserved.
1. Introduction

Alternative splicing is one of the key mechanisms of
post-transcriptional modification [1]. Through it, a
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single gene can give rise to a number of different
products rearranging its coding regions and splicing
out its non-coding regions in many alternative con-
figurations. The coding regions of a gene are called
exons and the non-coding regions are called introns.
Alternative splicing (AS) happens when exons have
many different possible configurations and hence
one gene can produce more than one single product
(protein).
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An extreme known case of AS is the gene DSCAM
of Drosophila, that it is known to produce more than
38,000 different proteins. It is estimated that half of
the human genes are alternatively spliced and this
percentage does not varymuch among other animals
[2].

Although AS is known since the 1980s there are
only a few theories on why it happens and tradi-
tional methods to predict it are based essentially on
the study of expressed sequences (see [3] for an up
to date overview), strongly helped by homology
considerations and careful analysis of the splice
site. Among the many possible forms of AS, the
one which we will analyze here is exon skipping,
that is the case when different gene products are
obtained skipping one of gene’s exons. Skipped
exons are called alternative exons while exons that
are not skipped are called constitutive exons
(Fig. 1).

Several methods to predict AS based on the local
sequence features have been proposed in literature
[4—6]. Although the authors recognize many discri-
minative features, themost effective among them is
certainly sequence homology. In spite of this result,
recent studies confirm from one side that constitu-
tive exons are more conserved than alternative
exons [7] and from another side that conserved
exons are subject to species-specific AS in a signifi-
cant amount [8]. The use of homology information
as a discriminative feature has become hence more
challenging, way beyond its scarce availability on
many sites. For this an other similar reasons tradi-
tional methods have been integrated and partially
replaced by machine learning methods trying to
infer AS on the basis of information that is always
available (i.e. the crude pre-mRNA sequence) [9].
Figure 1 Constitutive alternative splicing: two proteins ar
exon.
In our previous work [10] we have shown that a
machine learning predictor for exon skipping based
only on the numerical properties of the pre-mRNA
sequence in C. elegans has similar or better perfor-
mances than methods that account for homology,
position within the splice site or length of exons. The
machine learning approach proposed is here
extended and generalized improving the coding step
with the inclusion of sequence information content
modeling. A virtual genetic code has been devel-
oped that allows to improve classification perfor-
mances and to extend method’s application
possibilities. After proper coding, a fixed-length
set of features is extracted from the coded
sequences and finally a support vector machine is
trained and tested on the built features. Machine
learning ab initio recognition of alternatively spli-
cing exons confirms to be a viable and effective
procedure, that may be considered in all cases
where homology information is not available or
difficult to be obtained as well as when the local
information on the splicing site is vague or unreli-
able. In this work, C. elegans data will be consid-
ered.

The paper is organized as follows: in the first
section, an introduction to the problem of alterna-
tive splicing prediction is given together with a crash
overview of main literature approaches; in the sec-
ond section, the method is outlined and detailed,
from the introduction of the virtual genetic code for
coding, to feature extraction and splicing predic-
tion; in the third section data and results of meth-
od’s application are presented, highlighting the
effect of parameters’ choice; in the last section
conclusions are drawn and main extension perspec-
tives are given.
e made from the same pre-mRNA sequence, skipping one
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2. Proposed method

The whole process can be resumed in three steps:
� c
oding of each exonic or intronic sequence;

� f
eature extraction from coded sequences;

� t
Figure 2 The common classification scheme of the
genetic code. The four main rows indicate the first base
in the codon, the four main columns indicate the second
base and the rightmost column indicates the third base.
The gray regions represent ‘‘family codons’’, where the
encoded amino acid is independent of the third position.
Since there are 20 different amino acids and 43 = 64
possible codons the genetic code is redundant.

Figure 3 The virtual genetic code. The four main rows
indicate the first base in the codon, the four main columns
indicate the second base and the rightmost column indi-
cates the third base. There are no ‘‘synonyms’’ coding.
raining a classifier on the features’ vector pre-
viously obtained.

as explained in the next sections.

2.1. Exon coding

With respect to the paper [10], coding has been
improved in two ways. A first improvement is the
adoption of a codon based coding instead of a single
nucleotide based coding. This new coding scheme is
actually equivalent to defining a ‘‘virtual genetic
code’’, a numerical table such that each codon cor-
responds to a different code. A second improvement
is the adoption of a sliding window of width three to
replace each nucleotide with the numerical code
(from the virtual genetic code table) corresponding
to the codon centered on that nucleotide. Numerical
codes filling the virtual genetic code matrix are
computed on the base of the Shannon information
content of nucleotide letters in data sequences.

If we indicate as Ni i = {1,. . ., 4} the four bases
{ACGT}, following Shannon information theory the
information content of each triplet can be written
as in the following equation:

IðNi;N j;NkÞ ¼ �logð p

�ðNi;Nj;NkÞÞ; i; j; k2f1; . . . ; 4g
(1)

where log are base 2, I is the information content
and p() is the probability. The virtual genetic code is
hence a table of size 16 � 4 built with the informa-
tion content corresponding to each possible triplet
of nucleotides. Probability is estimated by relative
frequency of occurrence of each triplet in the data
(computed with respect to both splicing and non-
splicing groups) (Figs. 2 and 3).

Ifwe indicatewithSagenericnucleotide sequence
andwith Si its generic element of place i, the generic
element of place i of the coded sequence C is:

Ci ¼ IðSi�1; Si; Siþ1Þ (2)

a profile plot of the central exon once it has been
coded following this scheme for both the alternative
and constitutive case can be seen in Figs. 5 and 4,
respectively.

2.2. Feature extraction

Once data are coded (see Section 3), the first pro-
blem to cope with is the different length of the
various sequences. As can be seen from Figs. 5 and 4,
coded signals are strongly periodic and this fact
candidates auto regressive (AR) models as natural
descriptors of the dynamic of the phenomenon
under study. Following this line, we estimate an
AR model on the data and we choose its coefficients
as features. In this approach, each observed coded
exonic or intronic sequence C is assumed to be the
output of an order p AR model driven by a white
noise process e(n), that is the value in position n is
assumed to be equal to a weighted sum of the p
previous values plus a white noise term. As an AR
model has a fixed-length set of p coefficients, each
sequence is replaced by a fixed-length vector of p
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Figure 4 Profile plot of the sequence of a non-splicing
exon coded with the virtual genetic code.

Figure 6 Profile plot of 30 randomly chosen coded
sequences of splicing exon triplets. The 27 AR model
coefficients are plotted versus their index.
coefficients (Figs. 6 and 7). The model is based on
the following linear difference equations:

CðnÞ þ
Xp
k

akCðn� kÞ ¼ eðnÞ (3)

where ak is the kth AR parameter of an order p AR
process. To estimate model parameters we used the
classical Yule-Walker method, actually minimizing
the forward prediction error in a least-squares
sense.

At the end of process each intronic or exonic
sequence S is replaced by the fixed-length vector
v ¼ ða1; . . . ; apÞ of the normalized estimate of the
AR system coefficients ak.

2.3. Classification

In the last step we consider the support vector
machine (SVM) classification model. It is a classical
Figure 5 Profile plot of the sequence of a splicing exon
coded with the virtual genetic code.
technique for pattern recognition and data mining
classification tasks [11] that has shown excellent
performances in various heterogeneous fields [12].
The main advantage of SVM over i.e. neural net-
works, is that it has no local minima issues and that
it has less free parameters.

Given a set of points in R
k and a two-classes

labels vector, SVM aims to find a linear surface that
splits the data in two groups according to the indi-
cated labels, maximizing the margin, that is the
distance from both sets of points. This problem can
be formulated as a constrained quadratic optimiza-
tion problem:

min
1

2
jjwjj2

� �
(4)

subject to:

yiðwTxi þ bÞ� 1 (5)
Figure 7 Profile plot of 30 randomly chosen coded
sequences of non-splicing exon triplets. The 27 AR model
coefficients are plotted versus their index.
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where yi 2 {�1, 1} are classes’ labels, w is the
normal to the hyperplane and 2=jjwjj is the margin.

If the data are not linearly separable in R
k, they

can be projected nonlinearly in a Hilbert space
where the classification can be performed linearly,
maintaining the method almost unchanged. If we
look at the optimization’s problem solution, we see
that data appear only in the form of dot products
xi�xj and that even data transformed through a
function F:Rk 7! G (where G is a space of dimension
h � k) appear in the form of dot products
F(xi)�F(xj). As a consequence, it is possible to sub-
stitute whatever dot product function K(xi,
xj) = F(xi)�F(xj) in formulae and to compute the
solution without even knowing the form of function
F. Such a dot product function is called a kernel and
there is an active field of research in the choice of
the most suitable kernel for a given problem [13].

In this work we used a Gaussian kernel:

Kðxi; x jÞ ¼ expð�gjjxi � x jjj2Þg> 0 (6)

Its choice was derived mainly form the following
general practical considerations [14,15]:
� t
T

s

0
0
1
1
1
2
2
3
3
3

he radial basis function (RBF) SVM has infinite
capacity and hence Gaussian RBF SVM of suffi-
ciently small width can classify an arbitrarily large
number of training points correctly;
� t
he RBF kernel includes as a special case the linear
kernel;
� t
he RBF kernel behaves like the sigmoid kernel for
certain parameters’ values;
� t
he RBF kernel has less hyper-parameters than the
polynomial kernel;
� t
he RBF kernel has less numerical difficulties than
other kernels.

3. Experiments and results

The labeled dataset used to test our method is the
same of [9]. It is a collection of 487 exons for which
EST show evidence of alternative splicing and 2531
able 1 AUC values corresponding to each tested value of

\p 2 3 4 5

.2 0.6579 0.6324 0.5989 0.6837

.6 0.7184 0.6051 0.6275 0.7202

.0 0.7061 0.6677 0.6735 0.7412

.4 0.5762 0.6823 0.6931 0.7593

.8 0.7098 0.7404 0.7551 0.7831

.2 0.7002 0.7207 0.8009 0.8337

.6 0.7004 0.7476 0.8043 0.8319

.0 0.7191 0.7462 0.8127 0.8544

.4 0.7629 0.7356 0.8262 0.8751

.8 0.7339 0.7589 0.8258 0.8832
exons for which there is no evidence of alternative
splicing, for a total of 3018 labeled examples. All
data regard C. elegans and were obtained from the
Wormbase, dbEST and UniGene [9].

The data matrix obtained after coding and after
the AR model parameters’ estimate is filled row by
row by contiguous exon triplets. Rows labeled as
‘‘AS’’ have the central exon alternatively spliced,
while rows labeled as ‘‘not AS’’ have the central
exon constitutively spliced. The matrix has 3p col-
umns, as for each exon there are p AR model coeffi-
cients. After the random division in testing and
training sets (see below), we train the SVM classifier
with the labeled matrix. Performances were eval-
uated in terms of the average area under curve
(AUC) index of ROC curves. As the adopted dataset
is biased towards non-splicing sequences, we gen-
erated a new dataset of alternative splicing exons
resampling 5 times the original one of 487 alter-
native splicing sequences and adding a very small
Gaussian perturbation (s = 2.5�4). Therefore the
final dataset contains 4966 samples.

Once chosen the RBF kernel, there are two core
parameters to tune: the width of the Gaussian
function s and the order of the AR model p.

Tuning has been performed on a single split of the
full dataset in two parts, using k-fold cross-validation
with k = 5. One training set of 4/5 of data has been
randomly extracted and a series of parameters’
values has been tested with k-fold cross-validation
[17]. In k-fold cross-validation data are split in k
subgroups and in turn k � 1 of them are used to
predict the kth group values. Then average perfor-
mance on all k groups is used to assign a predictive
power to themethod tested. The advantage of cross-
validation is its robustness to outliers and overfitting.

For each couple of parameters’ values we exe-
cuted an SVM prediction and computed the average
performance through cross-validation. The perfor-
mances relative to each couple of parameters’ values
can be thought of filling a matrix P (Table 1) in which
each dimension represents a parameter.
parameters

6 7 8 9

0.7231 0.7405 0.6880 0.7428
0.7196 0.7834 0.8073 0.8485
0.7969 0.8395 0.8853 0.8906
0.8172 0.8556 0.9065 0.9266
0.8370 0.8855 0.9263 0.9431
0.8695 0.9039 0.9281 0.9561
0.8909 0.9263 0.9498 0.9482
0.9090 0.9200 0.9450 0.9622
0.9096 0.9388 0.9508 0.9438
0.9156 0.9412 0.9444 0.9625
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Figure 9 ROC curve for the BP classifier with 45 nodes in
the hidden layer.
In order to choose the model order, we tested all
values from 2 to 9. We could not use higher values
due to the presence of very short sequences in data
an even to reach order 9 we have been forced to
remove the 20 shortest sequences from the data set.
A regular increase of average performance with the
model order is clearly visible (Table 1) and we
choose the maximum allowed ( p = 9).

The other parameter was the width of the Gaus-
sian function in the kernel. We tested 10 values,
ranging from 0.2 to 3.8 in 0.4 steps and the final
choice was the local maximum for p = 9, that is s = 3
(see last column of Table 1).

Themethod has proven to bemore sensible to the
right choice of parameters with respect to [10].
Specifically, with low model order and narrow Gaus-
sian kernel the performance is not so striking. On the
other side, there is an evident improvement of
performance increasing the value of both para-
meters (Table 1).

With a proper choice of parameters, the method
reaches an average AUC of over 96.2% on testing
sets. This result notably improves state of the art,
as the best AUC previously published on these data
was about 89.7% [9]. The corresponding ROC curve
has a marked shift from the y axis due to method’s
failure to classify a few high scoring points from
the SVM. As a consequence, comparison with state
of the art in terms of true positive rate correspond-
ing to very low false positive rate (from 1% to 5%)
results in a poorer performance, while starting
from 6% of false positive rate the proposed meth-
ods markedly outperforms previous ones. Ranking
sequences on the base of the SVM predicted value,
we noted that the top misclassified sequences at
each run tend to be conserved. This fact suggests
Figure 8 ROC curve for the LVQ classifier with 45 nodes
in the hidden layer.
the opportunity that further biological verification
is performed on these sequences, because their
labeling, naturally prone to errors, could likely be
effect of noise.

Just for comparison, a learning vector quantiza-
tion (LVQ) and a feed forward backpropagation
artificial neural network (BP) classifications have
been peformed on the same features. For the for-
mer, we used a two layer network with 45 hidden
nodes and a 50% typical class percentage for the two
classes, while for the latter we used a two layer
network, with 45 neurons in the hidden layer, tansig
neurons on the first layer and purelin neurons in the
output layer. How can be seen from receiver oper-
ating characteristic (ROC) curves [16] in Figs. 8—10,
SVM markedly outperforms LVQ and BP in this spe-
cific application.
Figure 10 ROC curve built on 5-fold cross-validation
data for the SVM classifier.
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4. Conclusions

We have shown that using the virtual genetic code in
the coding step of the ab initio alternative splicing
prediction procedure allows to clearly improve clas-
sification performances and to extend method’s
application possibilities. Machine learning recogni-
tion of alternatively splicing exons confirms to be a
viable and effective procedure, that may be consid-
ered in all cases where homology information is not
available or difficult to obtain as well as when the
local information on the splicing site are vague or
unreliable. The proposed procedure reaches an AUC
of over 96% on tested C. elegans data and does not
account for homology, position within the splice site
or length of exons. A few top ranked sequences from
the SVM are misclassified at each run and we believe
these should be biologically verified, as suggested by
the overall prediction accuracy. The virtual genetic
code based on Shannon information content has pro-
ven to be an effective coding scheme and should be
considered as an attractive option whenever a
numerical translation of a biological sequence is
needed, also in other areas of genomics and tran-
scriptomics. Finally, although more data and more
work are needed to validate further this result, the
need for a deeper understanding of the splicing
machinery emerges, in order to use biological knowl-
edge in a more effective way in transparent models.
Future work is in studying other organisms and in
trying to predict more complex form of AS.
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