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Abstract

Detection of moving objects in video streams is the first
relevant step of information extraction in many computer
vision applications. Aside from the intrinsic usefulness of
being able to segment video streams into moving and back-
ground components, detecting moving objects provides a fo-
cus of attention for recognition, classification, and activity
analysis, making these later steps more efficient.

We present some extensions to the method for moving ob-
ject detection presented in [4]. Our main contributions are
related to the pre-processing of intermediate results (tran-
sience maps), aimed at enhancing the accuracy of detec-
tion results, and to the parallelization of some of the most
computationally intensive steps using SSE2 instructions, in
order to enhance efficiency and allow for real-time applica-
tions.

1. Introduction

Detection of moving objects in video streams is the first
relevant step of information extraction in many computer
vision applications, including traffic monitoring, automated
remote video surveillance, and people tracking [3]. Aside
from the intrinsic usefulness of being able to segment video
streams into moving and background components, detect-
ing moving objects provides a focus of attention for recog-
nition, classification, and activity analysis, making these
later steps more efficient, since only moving pixels need be
considered [2]. The problem is known to be significant and
difficult [8]. Conventional approaches to moving object de-
tection include temporal differencing [7], background sub-
traction [8], and optical flow [1].

Temporal differencing takes into account differences in
consecutive sequence frames, which allow to discern static
objects (having null differences) from moving objects (hav-
ing non-null differences). This approach is very adaptive to

dynamic environments, but it is strictly dependent on the ve-
locity of moving objects in the scene and it is subject to the
foreground aperture problem. In contrast, optical flow tech-
niques aim at computing an approximation to the 2D mo-
tion field (projection of the 3D velocities of surface points
onto the imaging surface) from spatio-temporal patterns of
image intensity [1]. They can be used to detect indepen-
dently moving objects in the presence of camera motion,
but most optical flow computation methods are computa-
tionally complex, and cannot be applied to full-frame video
streams in real-time without specialized hardware.

Surely background subtraction is the most common and
efficient method to tackle the problem (e.g. [6]). It is based
on the comparison of the current sequence frame with a
reference background, including information on the scene
without moving objects. It is independent on the velocity of
moving objects and it is not subject to the foreground aper-
ture problem, but it is extremely sensitive to dynamic scene
changes due to lighting and extraneous events. Although
these are usually detected, they leave behind holes where
the newly exposed background imagery differs from the
known background model (ghosts). While the background
model eventually adapts to these holes, they generate false
alarms for a short period of time.

Among different approaches, the one proposed in [4] al-
lows disambiguation of moving objects that stop for a while,
are occluded by other objects, and then resume motion.
Layered detection is based on two processes: pixel analy-
sis and region analysis. Pixel analysis determines whether
a pixel is stationary or transient over time, while region
analysis detects stationary regions of stationary pixels cor-
responding to stopped objects. We adopted the layered
approach, including a pre-processing of transience maps
aimed at suppressing shadows and reducing noise, and clus-
tering non-background pixels using region growing.

Moreover, the need for real-time systems imposes very
low computation times. We focused on most computation-
ally intensive steps of the proposed approach, obtaining par-
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allel modules for several tasks. Specifically, we adopted
the SIMD approach. SIMD architectures operate concur-
rently in a single instruction on multiple data. Their usage
is especially suited for applications where huge amount of
data must undergo the same processing, such as multime-
dia applications. Therefore we traduced in assembler most
time consuming routines, taking advantage of SIMD archi-
tectures.

The paper is organized as follows. In Section 2 we give
a brief description of the approach adopted for moving ob-
ject detection. In Section 3 we illustrate the basics of paral-
lelization of computationally demanding steps. In Section 4
we present results obtained with the above mentioned paral-
lelization, while Section 5 includes conclusions and further
research directions.

2. Approach to moving object detection

A robust detection system should be able to recognize
when objects have stopped and even disambiguate overlap-
ping objects - functions usually not possible with traditional
motion detection algorithms. The approach for moving ob-
ject detection based on layered adaptive background sub-
traction [4] allows quite efficiently the detection of overlap-
ping objects. Layered detection is based on two processes:
pixel analysis and region analysis.

2.1. Pixel analysis

Pixel analysis determines whether a pixel is stationary or
transient by observing its intensity value over time. Mov-
ing objects passing through a pixel cause an intensity pro-
file step change, followed by a period of instability; then
the profile stabilizes, in a manner dependent on the kind of
event. To capture the nature of changes in pixel intensity
profiles, a gradient based approach is applied.
Let It(x) be the intensity of pixel x at a time t occurring k
frames in the past. The motion trigger T prior to the frame
of interest t is the maximum absolute difference between the
pixel intensity It(x) and its value in the previous l frames:

T = max
j=1,...,l

{|It(x) − It−j(x)|} , (1)

where suggested value for l is 5 [2]. Let us also introduce
the stability measure as the variance of the pixel intensity
profile from time t to the present:

S =
(k + 1)

∑k
j=0 I2

t+j(x) −
(∑k

j=0 It+j(x)
)2

k(k + 1)
,

where k is set to correspond to one second of video [2].
Once T and S have been computed, a transience map M
can be defined for each pixel, taking three possible values:

background (BG), transient (TR), or stationary (ST). For
each pixel, the corresponding map value is updated to TR
if it was ST or BG and if motion trigger is greater than a
given threshold (there has been a step change in intensity).
Moreover, if it was TR and stability measure is lower than
a given threshold (intensity has been stabilized), it is up-
dated to BG if its stabilized intensity value is equal (within
a threshold Th) to the background intensity value, and to
ST otherwise.

In order to allow for adaptivity of the background model
to slow lighting changes, we update the background B by
running average with selectivity. Specifically, background
model Bt is initially set to the first image (B0(x) = I0(x)
for every pixel x), and then updated as:

Bt+1(x) =
{

αBt(x) + (1 − α)It(x), x non − moving
Bt(x), otherwise

(2)
where α is a time constant that specifies how fast new infor-
mation supplants old observations, usually chosen in [0.9,
1].

2.2. Region analysis

Non-background pixels in the transience map M are
clustered into regions. In [2, 4] clustering is obtained us-
ing a nearest neighbor spatial filter; in our implementation,
after a pre-processing of the transience map (see §2.3), we
cluster non-background pixels using a connected compo-
nent labeling algorithm based on region growing.

Each spatial region is then analyzed and classified as
moving or stopped object on the basis of the number of tran-
sient or stationary pixels it includes. According to the algo-
rithm reported in [4], regions that consist of stationary pix-
els are added as a new layer over the background. A layer
management process is used to determine when stopped ob-
jects resume motion or are occluded by other moving or sta-
tionary objects.

2.3. Transience map pre-processing

Prior to performing region analysis, we pre-process the
transience map, in order to suppress shadows and reduce
noise.

Shadows in a scene represent a problem for video sur-
veillance systems, especially those operating outdoor. In
fact, the cast shadow of an object (the shadow area projected
on the scene by the object) alters the shape of the object it-
self, leading to errors in the measurement of its geometrical
properties. This affects both the classification and the as-
sessment of moving object position, making uncertain the
subsequent moving object tracking. Moreover, cast shad-
ows of two or more objects can create a false adjacency be-
tween the objects, which leads to detecting them as a single
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Figure 1. Example of shadow suppression.

object. This affects many higher level surveillance tasks,
such as counting and classifying individual moving objects
in a scene. Instead, shadows in the background do not pose
big problems, as long as the background is correctly up-
dated during time.

Among the many approaches to moving cast shadow
suppression, we have adopted the one reported in [3], which
proved to be quite accurate and suitable for moving object
detection. The approach is based on the HSV color model,
which closely correspond to human color perception and
has been proved more suitable for detecting shadows com-
pared to RGB model, being able to separate chrominance
and intensity information.

For each pixel belonging to the foreground (either sta-
tionary or transient), a binary mask is constructed, indicat-
ing shadow pixels (value 1). Let IH

k (x, y), IS
k (x, y), and

IV
k (x, y) be the hue, saturation, and value components of

pixel (x, y) of image I at time k, and assume analogous
notation for components of the background image B. The
shadow mask is defined as:

SPk(x, y) =




1 ifα ≤ IV
k (x,y)

BV
k

(x,y)
≤ β and

IS
k (x, y) − BS

k (x, y) ≤ τS and
|IH

k (x, y) − BH
k (x, y)| ≤ τH

0 otherwise
(3)

with 0 < α < β < 1, where all parameter values are empir-
ically tuned and proved stable under environment changes.
The three conditions for identifying a foreground pixel as
shadow derive from the observation that in a shadowed area
there is a significant illumination variation, but only a small
color variation.

An example of application of the algorithm for shadow
reduction is given in Figure 1.

The output of shadow suppression, after being binarized,
is filtered with a morphological opening using a 3 × 3 struc-
turing element, in order to reduce noise due to sudden illu-
mination changes or small camera movements.

An example of the complete detection process is given in
Figure 2, where we show: (a) an input image; (b) the tran-
sience map M computed as described in §2.1 (white pixels
are stationary pixels, while green pixels are transient pix-

els); (c) the transience map M pre-processed as described
in §2.3; (d) the output image, obtained as described in §2.2
(the green rectangle indicates moving objects, while the yel-
low rectangle indicates stationary objects).

(a)

(b)

(c)

(d)

Figure 2. The complete detection process:
(a) input image; (b) Transience map; (c) Pre-
processed transience map; (d) output image.

For quantitative detection results we adopted the usual
Recall and Precision functions computed over tp (true pos-
itives), fn (false negatives) and fp (false positives):

Recall =
∑

tp∑
tp +

∑
fn

,

where (
∑

tp +
∑

fn) is the total number of objects in the
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ground truth, and

Precision =
∑

tp∑
tp +

∑
fp

,

where (
∑

tp +
∑

fp) is the total number of detected ob-
jects.

Several image sequences have been considered; here, for
space constraints, we only report results obtained for the
Walk1 sequence of the CAVIAR Project [5]. The sequence,
which is labeled and comprise 600 frames of 384×288 spa-
tial resolution, presents critical factors such as light change
and mimetics. Setting the motion trigger threshold to 70
(the stability measure is not taken into account due to the
absence of stationary objects in the sequence), the method
correctly detected 1217 over 1550 objects, achieving as per-
formance Recall = 0.79 and Precision = 0.73. In Figure 3
the Recall and Precision values are reported in accordance
to the variation of the motion trigger threshold. We re-
mark the role of the threshold, since for values less than 70
the method detects a lot of objects, also not present in the
ground truth, although the number of the relevant ones is not
significantly greater. This corresponds to smallest Precision
values, while letting stable the Recall value.
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Figure 3. Precision and Recall in terms of the
motion trigger threshold.

3. Parallelization

SWAR (SIMD Within a Register) architectures realize
concurrency using special registers (SWAR registers) of di-
mension wider than that of general registers, and suitable
instructions on such SWAR registers that allow to operate
concurrently on several data loaded into such registers. In
order to directly control SWAR registers, it is necessary to
program in assembler, and the algorithm must be suitably
modified in order to take into account their use.

For our experiments we adopted an Intel Pentium 4
processor, which supports MMX (MultiMedia eXtension),

SSE (SIMD Streaming Extension) and SSE2 (SSE ex-
tended) extensions. While MMX instructions operate on
64-bit MMX registers physically stored onto usual FPU reg-
isters, SSE and SSE2 instructions use a different set of eight
128-bit XMM registers. XMM registers can simultaneously
store two 64-bit integers or floats, four 32-bit integers or
floats, eight 16-bit integers, or sixteen 8-bit integers. SSE2
instructions (for data movement, data format conversion,
arithmetical and logical operations) operate concurrently on
XMM registers. Compared with analogous sequential in-
structions, this approach leads to a speedup which is upper
bounded by the number of data items loaded into registers
(which depends on the data type chosen).

For our experiments we adopted color RGB images; each
pixel is usually represented by 3 bytes (one for each color
component) and an image is represented as an array of
bytes. The general parallelization strategy consists in work-
ing separately on the three RGB channels, using different
XMM registers, each containing 16 pixels of one of the
color bands. In the case we need a representation with real
values (e.g. shadow suppression), we load 4 adjacent pixels
for each of the colour bands into the XMM registers. The
assembler SSE2 code has been introduced into the ANSI-C
source code, using directives that are extensions of ANSI-
C (and therefore implemented in different ways in different
compilers).

Some of the tasks taken into account for implementation
using SSE2 instructions are briefly described in the follow-
ing.

3.1. Motion trigger

The basic idea of the SSE2 implementation of the al-
gorithm for computing the motion trigger T (see §2.1) con-
sists in applying eqn. (1) concurrently for 16 adjacent pixels
loaded into XMM registers.

Since there is no absolute value function that operates
on SWAR registers, in order to compute the absolute value
differences appearing in eqn. (1) we had to use different
instructions. Specifically, the instruction psubusb oper-
ates a subtraction “with saturation” of two registers, mean-
ing that if the difference value is negative, than it is set to
0 (it is saturated). Computing two subtractions with sat-
uration between the image and the background and or-ing
the result, we obtain the absolute value of the difference.
Moreover, since there is no compare function that operates
on unsigned bytes (but only for signed ones), in order to
compare the previous result with the threshold, we first sum
the quantity 128 to both the threshold and the previous re-
sult, and then compare the obtained signed bytes (using the
instruction pcmpgtb).
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3.2. Background difference

Background difference, used in the construction of the
transience table M (see §2.1), can be implemented in SSE2
applying the sequential algorithm concurrently on 16 adja-
cent pixels loaded into XMM registers.

Absolute value differences between image and back-
ground intensity values are computed and compared to the
background threshold similarly to the case of motion trig-
ger computation. Results obtained for the three bands of
each image are then or-ed for obtaining the final difference
image.

3.3. Shadow suppression

The shadow suppression algorithm adopted for the pre-
processing of the transience map (see §2.3) consists, for
each non background pixel, in:

1. converting from RGB space to HSV space the pixel in
the current image and the corresponding pixel in the
background image;

2. computing the shadow mask using equation (3) and
updating the corresponding element in the transience
map.

Since input and output data are real (pixel intensities for
RGB channels must be normalized in [0,1], and HSV com-
ponents are real as well), we can load at most four adjacent
values into each XMM register. We therefore developed
SSE2 implementations for steps 1 and 2 above, working
concurrently on four pixels at a time. In both cases, the
main concern of SSE2 implementation is in the combina-
tion of results depending on if statements.

3.4. Erosion and dilation

Erosion and dilation have been used for the final pre-
processing of the transience map (see §2.3). Erosion (dila-
tion) with a 3 × 3 structuring element is obtained assigning
to each pixel of the binary image the value 0 (the value 1) if
the number of 8-connected adjacent pixels having value 1 is
less (greater) than a given threshold Te (Td), and the value
1 (the value 0) otherwise.

To implement erosion and dilation using SSE2 instruc-
tions we load 16 adjacent pixels of three consecutive image
rows into three XMM registers (see Fig. 4-(a)). Such data
allow to compute the result for “center pixels” (dark pixels
in central row of Fig. 4-(a)). The result is obtained by

1. summing along the columns (byte by byte) the three
registers, obtaining a register that contains the number
of white pixels column by column (see Fig. 4-(b));

2. summing three bytes at a time along the register result-
ing from step 1, to obtain the number of white pixels
for each neighborhood of “center pixels”, by:

(a) right shifting and left shifting the register by one
byte (see Fig. 4-(c));

(b) summing the three resulting registers along the
columns (see Fig. 4-(d)).

3. comparing the result with the threshold Te or Td (see
Fig. 4-(e) for erosion with Te=6).

(a)

(b)

(c)

(d)

(e)

Figure 4. Example of erosion: (a) 16 adjacent
pixels of 3 consecutive image rows loaded
into XMM registers xmm0, xmm1, xmm2 to
compute the result for central (dark) pix-
els; (b) result of step 1 over xmm0, xmm1,
xmm2; (c) register xmm3 together with reg-
isters xmm4 and xmm5 obtained by left and
right shifting of xmm3; (d) result of step 2
over xmm3, xmm4, xmm5; (e) result of step
3 over xmm6 (threshold Te=6).

3.5. Background update

As usual, the basic idea of the SSE2 implementation of
the algorithm for the update of the background B (see §2.1)
consists in loading 16 adjacent pixels into XMM registers
and applying the sequential algorithm concurrently on such
data, according to eqn. (2).

The main concern here is the need of dealing at the same
time with byte data (image and background) and real data
(the α parameter). The problem has been afforded unpack-
ing bytes to float, performing the necessary computations
four floats at a time, and packing back to bytes the results.
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4. Experimental results

We implemented the above described procedures on a
Pentium 4 with 2.40 GHz and 512 MB RAM, running Win-
dows XP operating system. We tested them on several color
image sequences; for space constraints, here we report re-
sults for just one sequence of 400 color images with size 320
× 240. All timings have been obtained using the Windows
high-resolution performance counters (QueryPerformance-
Counter and QueryPerformanceFrequency).

In Table 1 we compare times (in msecs) obtained as the
mean execution times for each frame on the whole video
with the implementation of the sequential and the SSE2 al-
gorithms for all tasks reported in §3. Moreover, we report
speedup values, obtained as the ratio of sequential and SSE2
execution times. Results for dilation are not shown, since
they perfectly agree with those obtained for erosion.

Task (1) Seq. (2) SSE2 Speedup
time time (1)/(2)

Motion trigger 3.49 0.39 8.95
Backg. difference 1.30 0.10 13.00
Shadow suppr. 0.61 0.29 2.10
Erosion 1.11 0.12 9.25
Backg. update 7.98 0.50 15.96

Table 1. Mean execution times (in msecs) of
the sequential and the SSE2 implementations
for all tasks reported in §3 on color images of
size 320 × 240, and related speedup.

Here we can notice that in most cases good speedup val-
ues could be achieved. Specifically, in all the cases where
we could operate solely on byte data (motion trigger,
background difference, erosion and dilation), we achieved
speedup values not too distant from the ideal speedup of 16
(16 bytes into a XMM register). In the case of shadow sup-
pression, where we had to operate on float data, achieved
speedup is more than half of the ideal speedup of 4 (4 floats
into a XMM register); this result can be considered appre-
ciable if we consider that available parallelism is very lim-
ited here, since computations apply only to non background
pixels (see §3.3). Finally, in the case where we had a mix-
ture of byte and float data (background update) the adopted
parallelization strategy has led to an extremely high speedup
value.
In the general case, it should be observed that, even if the
number of operations and memory accesses in the parallel
implementation decrease by a factor of 16 (for byte data)
or 4 (for float data) compared to the sequential case, execu-
tion times reduce by a smaller factor. This is mainly due to
the fact that the standard and the SWAR instruction sets are

noticeably different: not all instructions are present in both
sets and the number of clock cycles for the same instruc-
tion is different (generally SWAR instructions require more
clock cycles).

5. Conclusions

We presented a method for moving object detection that
allows disambiguation of moving objects that stop for a
while, are occluded by other objects, and that then resume
motion. Such method strongly relies on the work pre-
sented in [4]. Our main contributions are related to the pre-
processing of transience maps, aimed at suppressing shad-
ows and reducing noise, and clustering non-background
pixels using region growing. Moreover, being concerned
with real-time applications, we focused on some of the most
computationally intensive steps of the proposed approach,
obtaining SIMD parallel modules for several tasks: motion
trigger, background difference, background update, shadow
suppression and morphological operations. First experi-
mental results show that in most cases we could achieve
speedup values close to the ideal speedup. Future research
will be devoted to the parallelization of other tasks of the
moving object detection process.
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