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Abstract—Nowadays, the high availability of data gathered from wireless sensor networks and telecommunication systems has drawn

the attention of researchers on the problem of extracting knowledge from spatiotemporal data. Detecting outliers which are grossly

different from or inconsistent with the remaining spatiotemporal data set is a major challenge in real-world knowledge discovery and

data mining applications. In this paper, we deal with the outlier detection problem in spatiotemporal data and describe a rough set

approach that finds the top outliers in an unlabeled spatiotemporal data set. The proposed method, called Rough Outlier Set Extraction

(ROSE), relies on a rough set theoretic representation of the outlier set using the rough set approximations, i.e., lower and upper

approximations. We have also introduced a new set, named Kernel Set, that is a subset of the original data set, which is able to

describe the original data set both in terms of data structure and of obtained results. Experimental results on real-world data sets

demonstrate the superiority of ROSE, both in terms of some quantitative indices and outliers detected, over those obtained by various

rough fuzzy clustering algorithms and by the state-of-the-art outlier detection methods. It is also demonstrated that the kernel set is

able to detect the same outliers set but with less computational time.

Index Terms—Spatiotemporal data, outlier detection, spatiotemporal uncertainty management, rough set and granular computing

Ç

1 INTRODUCTION

SPATIOTEMPORAL (ST) data mining is a growing research
area dedicated to the discovery of hidden knowledge in

large spatiotemporal databases, mainly through detecting
periodic and/or frequent patterns and outliers. Particularly,
outlier detection finds its applications in a broad spectrum
of fields, such as fraud detection, intrusion detection in
computer networking, and detecting motion or abnormal
regions in image processing. The presence of outliers makes
the modeling difficult due to the discordance the outliers
introduce into the data; in this sense, the outlier detection
task is attractive for two main reasons: the isolation of
outliers, as a preventive step, can improve the performance
of the predictive modeling by offering better data quality;
on the contrary, the identification of outliers can be the
main goal of the analysis as, for example, in fraud detection.

The most investigated approaches for outlier detection

include:

1. distribution-based approaches that make use of
standard statistical distribution to model the data
declaring as outliers the objects that deviate from
the model;

2. depth-based techniques that are based on computa-
tional geometry and compute different layers of

convex hulls declaring as outliers the objects
belonging to the outer layers;

3. distance-based approaches that compute the propor-
tion of database objects that are a specified distance
from a target object; and

4. density-based approaches that assign a weight to
each sample based on their local neighborhood
density.

A different classification is based on the outlier detection
output and divides into: labeling and scoring techniques.
Labeling methods partition the data into two nonoverlap-
ping sets (outliers and nonoutliers) and scoring methods
offer a ranking list by assigning to each datum a factor
reflecting its degree of outlierness. These former methods
exploit a hard decision about the sets, the latter ones deal
with a sort of soft decision about the membership of each
datum to the set. The proposed method is the first rough
method that improves and upgrades the “scoring meth-
ods,” proposing an effective soft granular computing-based
solution exploiting the uncertainty region (boundary) to
obtain more reliable results. Indeed, rough-set theory (RST)
[41] is a paradigm to deal with uncertainty, vagueness, and
incompleteness and it is proposed for indiscernibility in
classification according to some similarity. Rough sets were
extensively used for data mining but rarely for outlier
detection in general-domain, the same for spatiotemporal
specific-domain is hardly ever addressed and never for
outlier detection in spatiotemporal data. In some sense, the
few available outlier detection approaches interpret the
rough set theory from the “operator-oriented point of view”
[53]. In contrast, our method, called Rough Outlier Set
Extraction (ROSE), exploits the set-oriented point of view of
rough set theory to define the concept of outlier in terms of
its lower and upper approximations (rough outlier set),
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keeping into account those objects that can neither be ruled
in nor ruled out as members of the target concept.
Performance of ROSE in detecting outliers is found to be
superior to best rough-fuzzy clustering algorithms in terms
of various quantitative indices and to several state-of-the-art
outlier detection methods.

Moreover, we introduce the concept of kernel set. Given a
data set, the kernel set is a selected subset of elements able
to describe the original data set in terms of data set
structure. This paper includes two different versions of the
ROSE algorithm on a test data set: one adopting, as input
set, the entire set and the other adopting its kernel set.
Experimental results show the advantages of considering
the kernel set, in term of computational time, by comparing
the rough outlier set extracted by the original data set with
one extracted by the kernel set.

This paper is organized as follows: In Section 2, an
overview on outlier detection approaches is given. Section 3
reports some preliminaries about rough set theory relevant
to this work, indeed our approach is rough set based.
Section 4 introduces the problem and reports the new rough
set approach ROSE to extract the spatiotemporal rough
outlier set. Section 5 introduces the new set kernel set.
Sections 6.1, 6.2, and 6.3 present executed tests on three real-
world (benchmark and test) data sets and the performance
evaluation of the algorithm. Finally, conclusion remarks are
given in Section 7 about ongoing and future work.

2 RELATED WORK

Most of the existing surveys on anomaly detection focus on
a particular application domain or on a single research area,
while the surveys, like [25], [14], [36] and two more recent
brief surveys [44] and [49] are complete works that give the
state of the art of anomaly detection techniques. They group
anomaly detection into multiple categories and discuss
techniques under each category. The discussed research
issues include many topics to be taken into account to
choose the appropriate outlier detection approach:

1. the detection method (parametric, i.e., distribution-
based [7], depth-based [30], [29], [20]; graph-based
methods [33], [48]; nonparametric, i.e., distance-
based [31], [4], [43], [46]; density-based [12], [45],
[54], [40], [55], [6]; clustering-based methods [24], [1],
[21], [38]; and semiparametric, i.e., neural network-
based, support vector machine-based techniques);

2. the nature of the detection algorithm, i.e., super-
vised, unsupervised, semi-supervised detection;

3. the nature of data, i.e., numerical, categorical, [11],
[18] or mixed data [32], [37];

4. the size and the dimensionality of the data set, [2],
[57], [47]; and

5. the nature of the target application [13], [22], [5].

This concerns the outlier detection methods in general
domain. Concerning with specific spatiotemporal domain,
only a few outlier detection methods have been proposed.
Wu et al. [52] propose a spatiotemporal outlier detection
algorithm called Outstretch, which discovers the sequences
of spatial outliers over several time periods. Birant and Kut
[9] present a ST-outlier detection approach based on

clustering concepts called ST-DBSCAN which is an im-
proved version of the clustering technique DBSCAN [45]
that supports also temporal aspects. Cheng and Li [17]
further propose a four-step approach to detect spatiotem-
poral outliers, i.e., classification, aggregation, comparison,
and verification. Wang et al. [50] also propose an approach
to outlier detection in spatiotemporal domain. In a more
recent work, Liu et al. [34] deal with the problem of
detecting spatiotemporal outliers and causal relationships
among them from traffic data streams.

Rough set theory has been recently introduced in the ST-
domain literature for different aspects. In ST-domain, using
the notion of rough sets, Bittner [10] defines approxima-
tions of ST-regions and relations between those approxima-
tions. Concerning outlier detection in general domain some
works have been proposed: Nguyen [39] discusses a
method for the detection and evaluation of outliers, as well
as how to elicit the background domain knowledge from
outliers using multilevel approximate reasoning schemes;
Chen et al. [15] demonstrate an application of granular
computing model using information tables for the outlier
detection; Jiang et al. [27] propose a definition for outliers
based on a rough outlier factor (ROF) as degree of
outlierness for every object with respect to a given subset
of universe. More recently, the same authors [28] propose a
novel definition of outliers—sequence-based outliers—in
information systems of rough set theory and an algorithm
to find out such outliers. Concerning spatiotemporal outlier
detection, no rough set theory-based approach has been
proposed up to now.

3 ROUGH SET THEORY

Rough set theory, proposed by Pawlak [41], is a new and
highly accepted paradigm used to deal with uncertainty,
vagueness, and incompleteness. The main idea is based on
the indiscernibility relation that describes indistinguish-
ability of objects. Rough Set Theory can be approached as
an extension of the Classical Set Theory, for use when
representing incomplete knowledge. Concepts are repre-
sented by lower and upper approximations, according to
which rough set methodology focuses on approximate
representation of knowledge derivable from data [42].

3.1 Indiscernibility and Set Approximation

Let U be the universe of the discourse and A be the finite
and nonempty set of attributes, then S ¼ hU;Ai is an
information system. Let B a subset of A. With every subset
of attributes B � A, an equivalence relation IB on U can be
easily associated:

IB ¼ fðp; qÞ 2 U � U = 8a 2 B; aðpÞ ¼ aðqÞg; ð1Þ

where IB is called B-indiscernibility relation.
If ðp; qÞ 2 IB, then objects p and q are indiscernible from

each other by attributes B. The equivalence classes of the
partition induced by the B-indiscernibility relation are
denoted by ½p�B. These are also known as granules. We can
approximate any subset X of U using only the information
contained in B by constructing the lower and upper
approximations of X. The sets fp 2 U : ½p�B � Xg and
fp 2 U : ½p�B \X 6¼ ;g, where ½p�B denotes the equivalence
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class of the object p 2 U relative to IB, are called the B-lower
and B-upper approximation of X in S and, respectively,
denoted by BðXÞ; BðXÞ. The objects in BðXÞ can be
certainly classified as members of X on the basis of
knowledge in B, while objects in BðXÞ can only be classified
as possible members of X on the basis of B.

4 SPATIOTEMPORAL OUTLIER DETECTION

In this section, the spatiotemporal outlier detection problem
is introduced by providing the problem formalization from
a theoretical standpoint, together with its computational
solution. A strict distinction between the spatial and
temporal components is proposed in our definition of the
problem. This may result useful in many contexts,
for example, data sets which are characterized by only
spatial information (we intend for spatial not only location
information but also features detected at each location),
where the temporal information is implicitly attached or is
not present at all. In all such cases, the distinction allows us
to consider just the spatial component, saving space, and
time. In this way, time can be differently weighted for
finding more efficiently temporal outlierness and for
handling different scenarios, where spatial and temporal
components get different importance in the data set. The
proposed approach finds also spatiotemporal outliers.

4.1 Problem Definitions

Let us consider an information system S ¼ <U;A> with U a
spatiotemporal normalized data set and A its set of
attributes. U can be written as follows:

U ¼ fpi � ðzi1; zi2; . . . ; zimÞ 2 ½0; 1�m; i ¼ 1; . . . ; Ng;

where pi; i ¼ 1; . . . ; N is a m-dimensional feature vector and
A ¼ fa1; a2; a3; . . . ; amg is the attribute set. In the following,
we consider that at least three attributes must be present,
i.e., the spatial attributes and the temporal one.

Given U , an integer n > 0 and a measure dpiðUÞ, defined
over every pi 2 U , the general definition of the Outlier
Detection Problem is as following:

Definition 1. The Outlier Detection Problem consists of finding
n � n objects p1; p2; . . . ; pn; pnþ1; . . . ; pn 2 U such that

dp1
ðUÞ � dp2

ðUÞ � � � � � dpnðUÞ ¼ dpnþ1
ðUÞ � � � ¼ dpnðUÞ

> dpjðUÞ; 8j ¼ nþ 1; . . . ; N:

According to this definition, the concept of measure is
used to determine the degree of dissimilarity of each object
with respect to all others. Then, the n-Outlier Set can be
formally defined as:

Definition 2. A n-Outlier Set O � U is the set of n � n objects:

O ¼ fp1; . . . ; pn; pnþ1; . . . ; pn 2 U = dp1
ðUÞ � � � � � dpnðUÞ

¼ dpnþ1
ðUÞ � � � ¼ dpnðUÞ > dpjðUÞ 8j ¼ nþ 1; . . . ; Ng;

where dpiðUÞ; 8i ¼ 1; . . . ; N is a measure defined and
computed on U .

From Definition 2 it follows that � ¼ dpnðUÞ is the
outlierness threshold, i.e., the minimum value among the

n maximum values of measures computed in U (associated
with objects belonging to the n-Outlier Set), i.e.,

� ¼ inffmax1ðdpðUÞ; dqðUÞÞ; . . . ;maxnðdpðUÞ; dqðUÞÞg;
8p; q 2 U:

ð2Þ

Starting from the definition of spatial outlier and temporal
outlier due to Birant and Kut [9] asserting: “a spatial outlier
is a spatial referenced object whose nonspatial attribute
values are significantly different from those of other
spatially referenced objects in its spatial neighborhood,”
and “a temporal outlier is an object whose nonspatial
attribute value is significantly different from those of other
objects in its temporal neighborhood,” we propose the
following definitions applied only to spatiotemporal data:

Definition 3. A Spatial Outlier (S-Outlier) is an object whose
spatial attribute value is significantly different from those of its
closer objects (spatial neighborhood).

In this framework, the Spatial Outlier definition corre-
sponds to:

Definition 4. Given U , an integer n > 0 and a measure on
spatial component dspiðUÞ, defined over every pi 2 U , an object
p 2 U is a S-Outlier iff dspðUÞ � � where � is defined in (2).

Following Definition 4, it holds that:

Proposition 1. A Spatial Outlier (S-Outlier) is an object that
belongs to the spatial n-Outlier Set indicated by Os.

Similarly, we propose the following definition of
Temporal Outlier, applied to only spatiotemporal data:

Definition 5. A Temporal Outlier (T-Outlier) is an object whose
temporal attribute value is significantly different from those of
its closer objects (temporal neighborhood).

In this framework, the Temporal Outlier definition
corresponds to:

Definition 6. Given U , an integer n > 0 and a measure on
temporal component dtpiðUÞ, defined over every pi 2 U , an object
p 2 U is a T-Outlier iff dtpðUÞ � � , where � is defined in (2).

Equally, following Definition 6, it holds that:

Proposition 2. A Temporal Outlier (T-Outlier) is an object that
belongs to the temporal n-Outlier Set indicated by Ot.

Definition 3 states that a spatial outlier has no objects or a
small group of objects in its spatial neighborhood. The same
is valid for a temporal outlier according to Definition 5.
Following both definitions, the following holds:

Definition 7. A Spatiotemporal Outlier (ST-Outlier) is an object
that respects both the definitions above.

To obtain a real degree of outlierness, an appropriate
measure should be associated to each object; i.e., the
euclidean distance computed between each object and all
the other objects belonging to U . In real applications,
characterized by an huge amount of data, this idea is
unfeasible due to its high computational complexity
ðOðN2ÞÞ where N ¼ jU j.
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We preserve two aims: on one hand, we exploit the well-
known outlier definition based on k-nearest neighbors [43],
to associate to each object, a measure based on the distances
among the object itself and its k-nearest neighbors rather
than all N objects with k� N ; on the other hand, we make
use of a pruning strategy that discards objects that surely
cannot belong to the n-Outlier Set, to address the problem of
alleviating the computational cost.

In a Spatiotemporal context, the measure associated
with each object is based upon the distances from its spatial
k-nearest neighbors and its temporal k-nearest neighbors
[3]. Precisely,

ds;tp ðUÞ ¼ � � dspðUÞ þ � � dtpðUÞ; ð3Þ

where

dspðUÞ ¼
Xk

j¼1

dsðp;Nsðp; pjÞÞ; 8p 2 U; ð4Þ

dtpðUÞ ¼
Xk

j¼1

dtðp;Ntðp; pjÞÞ; 8p 2 U; ð5Þ

where k > 0 is the number of nearest neighbors to keep into
account, Nsðp; pjÞ and Ntðp; pjÞ are, respectively, the
jth spatial nearest neighbor and the jth temporal nearest
neighbor of p, and �, � weight such that �þ � ¼ 1.
Definition 1, that introduces the Outlier Detection Problem,
defines the Spatiotemporal Outlier Detection Problem, by
selecting a measure as in (3).

To better illustrate the meanings of the previous and the
following definitions, let us consider the example, a
spatiotemporal data set E ¼ fpi � ðzi1; zi2; zi3Þ 2 ½0; 1�3; i ¼
1; . . . ; 18gwhere pi is a three-dimensional feature vector and
A ¼ fa1; a2; a3g is the essential attribute set, i.e., a1; a2 are
the spatial attributes and a3 is the temporal attribute.
E is a labeled data set containing 18 elements as

reported in Table 1 of Appendix, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2012.234, and
plotted in the Fig. 1. By fixing k ¼ 3 and n ¼ 4, the outlier
sets (spatial, temporal outlier sets), on the basis of the
previous definitions, are computed as follows: A 4-Spatial
Outlier Set Os � E is the set of objects p 2 E that

significantly deviate from the rest of data with respect to

the spatial component, i.e., Os ¼ fð0:95; 0:55; 0:50Þ; ð1; 0:60;

0:50Þ, ð0:01; 0:01; 0:1Þ; ð0:9; 0:9; 0:95Þg. A 4-Temporal Outlier

Set Ot � E is the set of objects p 2 E that significantly

deviate from the rest of data with respect to the temporal

component, i.e., Ot ¼ fð0:01; 0:01; 0:1Þ; ð0:20; 0:21; 0:3Þ;
ð0:30; 0:22; 0:3Þ; ð0:9; 0:9; 0:95Þg. If n ¼ 2, a 2-Spatiotemporal

Outlier Set Os;t � E is the set of objects p 2 E that

significantly deviate from the rest of data with respect to

the spatial and the temporal component, i.e., Os;t ¼ fð0:01;

0:01; 0:1Þ; ð0:9; 0:9; 0:95Þg. Os, Ot, and Os;t are shown in

Fig. 2a as diamond and square, as triangle and square and

only square, respectively. In Fig. 2b, a 2D projection has

been reported to better visualize that the spatial outliers

and spatiotemporal outliers are spatially far from the rest

of data.

4.2 Rough Outlier Set Extraction

4.2.1 Theory

The goal of our approach is to exploit the rough set theory

to define the Outlier Set such as a Rough Outlier Set.
Let S ¼ <U;A> be an information system with U a

spatiotemporal normalized data set and A its attribute set. If

n > 0 is the required outlier number, we want to describe

O � U (n-Outlier Set) as

<BðOÞ; BðOÞ>ðRough n	Outlier SetÞ; ð6Þ

where BðOÞ is the B-Lower approximation and BðOÞ is the B-

Upper approximation of n-Outlier Set with respect to an

attribute subset B � A.
The B-Lower approximation BðOÞ is defined as the set of

objects that can be certainly classified as members of the set
O on the basis of the knowledge in B, while the B-Upper

approximation BðOÞ is defined as the set of possible members

of O on the basis of the knowledge in B.
With this aim, let IB be the B-indiscernibility relation on

the universe U :

IB ¼ fðpi; pjÞ 2 U � U : aðpiÞ ¼ aðpjÞ; 8a 2 Bg:

The equivalence classes ½pj�B or granules Gj of the

partition induced by IB on U are such that
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U ¼
[N

j¼1
Gj and Gj \Gj ¼ ;; i 6¼ j:

The measure in (3) is used as a spatiotemporal weight
!Gj
ðs; t; iÞ, to be assigned to every granule Gj, depending on

space, s, and/or on time, t, and at iteration, i. The attribute
subsets B include spatiotemporal attributes, or only spatial
and only temporal attribute to define spatiotemporal outlier
set, or only temporal set and only spatial outlier set,
respectively. In this framework, the B-Lower and B-Upper
approximations at iteration i can be defined as follows:

Definition 8. The B-Lower approximation BiðOÞ of n-Outlier
Set O, at iteration i, is

BiðOÞ ¼ fGj � U : !Gj
> �ig;

where

�i ¼ inf
�
maxi1 ð!Gj

; !Gk
Þ; . . . ;maxin ð!Gj

; !Gk
Þ
�
;

8 Gj;Gk � U:
ð7Þ

Definition 9. The B-upper approximation BiðOÞ of n-Outlier
Set O, at iteration i, is

BiðOÞ ¼ fGj � U : !Gj
> �ig;

where

�i ¼ �i	1; 8 i >¼ 2: ð8Þ

The threshold �1 is computed as the minimum value
among the n higher values of weights assigned to the
granules at first iteration, then, at second iteration, �2 will be
the new minimum value among the new n higher values
of weights reassigned to the granules at second iteration
and �2 ¼ �1.

The iterative procedure will stop when the following
convergence criterion will be satisfied:

Lemma 1. The construction of the lower approximation BðOÞ or

the upper approximation BðOÞ of an n-Outlier Set O

converges if it exists an index k such that the threshold does
not vary anymore, i.e.,

if �k ¼ �k then BkðOÞ ¼ BkðOÞ: ð9Þ

Proof. See Appendix, available in the online supplemental
material. tu

Hence, the Rough n-Outlier Set is represented by

<Bk	1ðOÞ; Bk	1ðOÞ>: ð10Þ

In case of B ¼ A (every attribute is considered), the
granules are

8pj 2 U : fpjg � Gj 8j ¼ 1; . . . ; N; ð11Þ

so both spatial and temporal components are taken into
account.

As instance, let us consider the labeled Example data set.
In this case, the attribute set is A ¼ fx; y; tg, i.e., x and y are
cartesian coordinates and t is the temporal component.

Spatial Outliers In the case of spatial outliers, the
reduction is made in terms of temporal component, i.e.,
B ¼ ftg; so we have the following partition of the universe:

IB ¼Iftg ¼ ffp1; p2g; fp3; p9g; fp4g; fp5g; fp6g; fp7; p8g; fp10g;
fp11g; fp12g; fp13g; fp14g; fp15g; fp16g; fp17g; fp18gg:

The concept of Spatial Outlier can be appropriately
defined on the basis of knowledge in B ¼ ftg. Specifically,
the B-lower approximation of the Spatial Outlier Set Os is
composed by the granules completely included into Os,
i.e., BðOsÞ ¼ ffp7; p8g; fp17g; fp18gg and the B-upper approx-
imation is composed by the granules that have nontrivial
intersection with Os, i.e., BðOsÞ ¼ ffp7; p8g; fp17g; fp18gg. In
this case, the upper approximation does not give any
additional information.

Temporal Outliers In the case of temporal outliers, the
reduction is made by spatial components, i.e., B ¼ fx; yg,
getting

IB ¼ Ifx;yg ¼ ffp1; p12g; fp2; p13g; fp3g; fp4g; fp5g; fp6g; fp7g;
fp8g; fp9g; fp10g; fp11g; fp14g; fp15g; fp16g; fp17g; fp18gg:

The concept of Temporal Outlier can be equivalently get

on the basis of knowledge in B ¼ fx; yg. The B-lower
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approximation of the Temporal Outlier Set Ot is composed by

the granules completely included into Ot, i.e., BðOtÞ ¼
ffp17g; fp18gg and the B-upper approximation is composed by

the granules that have a nontrivial intersection with Ot,

i.e., BðOtÞ ¼ ffp1; p12g; fp2; p13g; fp17g; fp18gg. In this case,

the notion of rough set arises; indeed, the upper approx-

imation gives additional information.

4.2.2 ROSE Algorithm

The Rough Outlier Set Extraction Algorithm is designed to
receive as input the universe U , the number k of nearest
neighbors, and the number n of outliers to detect. The
output of the (iterative) procedure is the Rough Outlier Set
(Upper, Lower Approximation, and Negative Region). The
algorithm selects, at each step, a small subset of objects,
called WorkingSet, from the overall data set U . To this aim,
ExtractElements extracts a number of elements equal to a
fixed percentage of the cardinality of U that has to be
greater than k. The following main steps are computed. For
all selected objects, the procedure computes the euclidean
distances among the objects in the WorkingSet and all the
objects of U , considering the spatial components, the
temporal components or both of them (general case
B ¼ A) depending upon the chosen attribute subset B with
respect to the Rough Outlier Set has been computed.
Algorithm ROSE related to the general case has been
shown. UpdateUpperApprox and UpdateLowerApprox
at first iteration create the same set of n top outliers at
that step, i.e., the n objects that have an associated
measure higher than the others. Then, at next iterations,
UpdateUpperApprox and UpdateLowerApprox compute
the Lower and Upper approximation of Rough Outlier Set,
using the � (computed by LowerWeight) and � prev
thresholds as, respectively, defined in (7) and (8). At each
iteration i, the pruning strategy selects objects from U that
have their measure under the computed threshold to build
the Negative Region. The LowerWeight function computes
the � threshold (and consequently � prev is the saved value
of � before to be updated). At each iteration, the thresholds
have been computed as the weight minimum value among
the weight maximum n values, as defined in (7)). The
difference set between the Universe set and the Negative
Region is the Kernel Set.

Algorithm 1. ROSE - Rough Outlier Set Extraction.

beginROSExtractionðU; n; kÞ
LowerOutlierSet ¼ null;UpperOutlierSet ¼ null
ws;t;kðqÞ ¼ 0

� prev ¼ 0; � ¼ 0

WorkingSet ¼ ExtractElementsðUÞ
while (WorkingSet! ¼ null) do

for p 2 U do

for q 2 WorkingSet do

if ðLowerOutlierSet ¼¼ null and

UpperOutlierSet ¼¼ nullÞ
orðws;t;kðqÞ � � prevÞÞ then

dsðp; qÞ ¼ CalculateSpDistanceðp; qÞ
dtðp; qÞ ¼ CalculateTempDistanceðp; qÞ
BuildTreeKNNðp; q; ds; dt; kÞ

else

AddNegativeRegionðpÞ

end if

end for

end for

for q 2WorkingSet do

ws;t;kðqÞ ¼ CalculateWeightðqÞ
UpperOutlierSet ¼ UpdateUpperApprox
ð� prev; n; ws;t;kðqÞÞ
LowerOutlierSet ¼ UpdateLowerApproxð�; n; ws;t;kðqÞÞ

end for

� ¼ LowerWeightðUpperOutlierSetÞ
if ð� ! ¼ 0Þ then

� prev ¼ �
end if

U ¼ U 	WorkingSet

WorkingSet ¼ ExtractElementsðUÞ
end while

end ROSExtractionðÞ

4.2.3 ROSE Algorithm—Time Complexity

The ROSE algorithm has worst-case time complexity
OðjU j2Þ, but practical complexity OðjU j1þdÞ, with d < 1 and
U the universe.

5 THE KERNEL SET: RELEVANCE TO OUTLIER

DETECTION

The present section introduces a new set, called kernel set,
and states that it is a relevant set for outlier detection.
Given a data set U , the kernel set is a subset, of lower
cardinality, that can be used instead of U , to detect the
same outlier set. The time complexity reduction of the use
of kernel set is quantified by measuring kernel set
dimensionality over that of U .

5.1 Definition

Let us now define a new set, called Kernel Set, K � U , as a
selected subset of the universe U that characterizes the
overall data set. Intuitively, this set is a subset of objects of
U that maintains the general structure of the universe U .
The Kernel Set is built by construction, in an iterative way,
adding each object having specific properties.

Definition 10. Given U and two integers n > 0, k > 0 (number
of nearest neighbors), dðUÞ a measure defined on U , the Kernel
Set K is built by adding each object p 2 U such that one of the
following properties holds:

1. dpðUÞ � � ,
2. if dpðUÞ < � , then 9q 2 U such that p 2 NNkðqÞ

and dqðUÞ < � and dqðK 	 fpgÞ � � ,

where NNkðqÞ is the set of k-nearest neighbors of q and dðKÞ
is the restriction of dðUÞ on K � U .

The Definition 10 states that the objects that belong to the
Kernel Set are:

1. object p for which dpðUÞ � � and, hence, belongs to
n-Outlier Set.

2. object p that, even if dpðUÞ < � , is one of the nearest
neighbors of an object q for which dqðUÞ < � and
dqðK 	 fpgÞ � � .
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The second property states that once these objects p have
been added to K, the measure of the object q becomes less

than � also in K as in U . Otherwise, the global structure of

the data set should be altered.
Also, the Kernel Set is built for the Example data set like:

K ¼ fð0:01; 0:01; 0:1Þ; ð0:9; 0:9; 0:95Þ; ð0:95; 0:55; 0:5Þ;
ð1:0; 0:6; 0:5Þ; ð0:2; 0:21; 0:3Þ; ð0:3; 0:22; 0:3Þ;
ð0:3; 0:16; 0:55Þ; ð0:35; 0:15; 0:6Þ; ð0:15; 0:26; 0:76Þ;
ð0:16; 0:34; 0:77Þg:

This set is also reported in Fig. 1b. The Kernel Set
contains all elements of the Outlier Set.

5.2 Properties

Let us start to prove the following propositions related to

the new set.

Proposition 3. The measure computed in K is an upper bound of

the measure computed in U such that

dpðUÞ 
 dpðKÞ; 8 p 2 U;

where dpðUÞ ¼
Pk

j¼1 dðp;Nðp; pjÞÞ and Nðp; pjÞ is the

jth nearest neighbor of p.

Proof. See Appendix, available in the online supplemental
material. tu

The following proposition is valid:

Proposition 4. A Kernel Set contains the n-Outlier Set: K � O.

Proof. 8p 2 O : dpðUÞ > � ) p 2 K.
The proof clearly follows from definition of K. tu

Proposition 5. The Outlier Set OK computed starting from

Kernel Set K is a superset of O computed from U :

OK � O:

Proof. See Appendix, available in the online supplemental
material. tu

5.3 Significance to Outlier Detection

The kernel Set is a meaningful subset of the universe U with

the following properties:

. Kernel Set is a subset with lower cardinality than U ,

. the “same results” in terms of rough outlier set are
obtained using Kernel Set instead of U .

. Kernel Set can be considered as the model learned
during a training phase.

In the following, we propose the comparison between

the obtained results, in terms of rough outlier set, executing

ROSE algorithm, once using, as input, the entire universe U
and another time computed using, as input, the kernel Set K.

5.4 Computational Benefits

Let us consider the two versions (or runnings) of ROSE

algorithm, to appreciate the computational benefits. At the

first run, ROSE algorithm receives, as input, the entire data

set U , while at the second run, ROSE receives the kernel set
K of U that is a subset of U . A computational benefit,

coming from using kernel set instead of the entire universe,

is derived. Indeed, OðjU j1þdÞ < OðjKj1þdÞ, being K � U . To

quantify the computational benefits coming from the use of

the kernel set, we evaluate the dimensionality of kernel set

K with respect to U . The experimental results have been

provided in the following Section 6.4.

6 EXPERIMENTAL RESULTS AND DISCUSSION

Our outlier detection method is based on rough set theory

and is specific for spatiotemporal data. At the best of our

knowledge, there is no rough approach to outlier detection

for spatiotemporal data to compare with. Hence, three

different experimental tests have been executed. The first

test is oriented to demonstrate the ability of the outlier

detection algorithm and the role of the kernel set working

on a real-world spatiotemporal data set; the comparisons on

this data set are made using rough-fuzzy clustering

methods. The second test is intended to compare our

results with other outlier detection methods (also rough-

oriented) for general domain on a UCI repository data set.

The third test is oriented to compare our performance with

outlier detection methods (not rough approach) tailored for

spatiotemporal domain, on a spatiotemporal data set. Two

Sections 6.4 and 6.5 end this section: one concerning an

experimental evaluation of the dimension reduction per-

centage of the kernel set with respect to its starting data set

U and one concerning a sensitivity analysis about the

parameters k and n of the algorithm.

6.1 School Buses Data Set

For the first test, we make tests on a real-world data set,

named School Buses [19]. The data set is publicly available

and consists of 145 trajectories (about 69,000 entries) of two

school buses collecting and delivering students around

Athens metropolitan area in Greece for 108 distinct days.

The structure of each record is as follows: fobj id; traj id;
date; time; lat; lon; x; yg where obj id is the school bus

identification, traj id is the unique trajectory identification,

the date and time are the sampling time stamps every

30 seconds (date in dd=mm=yyyy format and time in

hh:mm:ss format), the ðlat; lonÞ and ðx; yÞ are the bus location,

in WGS84 and in GGRS87 reference systems, respectively. In

our case, the obj id and traj id are not considered, date and

time fields are converted in just one field t consisting of a

time string corresponding to the elements year, month, day,

hour, minute, and second. Moreover, the lat and lon are

redundant and are not considered, because x and y give the

same information. Hence, the normalized representation of

the data set is illustrated in Fig. 3b: in a 3D cartesian

reference system, x and y are the spatial coordinates and the

third dimension is time t. In Fig. 3a, the trajectory map of

school buses is shown. In the following Fig. 3c, the testing

data set consisting of half of the original data set (about

30,000 entries) with some added temporal outliers is shown.

6.1.1 Rough Outlier Set Extraction—Spatial Rough

Outlier Set Extraction from U

Let U denote the spatiotemporal normalized School Buses

data set:
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U ¼
�
pi � ðzi;1; zi;2; zi;3Þ 2 ½0; 1�3; i ¼ 1; . . . ; N

�
;

where ðzi;1; zi;2Þ are cartesian coordinates of the ith object,
zi;3 is the relative time stamp. Let <U;A> be the
information system, with the attribute set A ¼ fx; y; tg,
i.e., x and y are the spatial components and t is the
temporal component.

We want to describe O � U ðOutlier SubsetÞ as the
rough outlier subset <BðOÞ; BðOÞ>, where B � A is con-
stituted by the spatial attributes, ðx; yÞ. Selecting only
spatial components, the results of selected iterations, an
intermediate step, the last-1 and the last one have been
shown. Specifically, the lower, upper approximation (lower
and boundary) at an intermediate step of Spatial Rough
Outlier Set are represented and shown in Figs. 4a and 4b,
where boundaries are reported in gray color.

Figs. 4c and 5a show the lower, upper approximation
(lower and boundary) at last-1 step, while Figs. 5b and 5c
show the same approximations at last step. In the last
figure, we can see the advantages of keeping into account

the boundary. Otherwise, many interesting objects (belong-
ing to the boundary) should be missed.

6.1.2 Rough Outlier Set Extraction—Spatiotemporal

Rough Outlier Set Extraction from U

Let <U;A> be the information system, with the attribute set
A ¼ fx; y; tg, i.e., x and y are the spatial components and t is
the temporal component. Now we are considering B ¼ A, so
we are looking for spatiotemporal Rough Outlier Set.

The spatiotemporal outliers will be more relevant than
spatial and temporal outliers (see temporal outliers injected
in the Fig. 3b). Hence, the lower approximation includes
the most part of spatial and temporal outliers, while the
upper approximation includes the remaining part of
temporal outliers and some other spatial outliers have
been detected. In this section, we show the lower, lower
approximation with boundary at last step. Fig. 6a shows
the lower approximation, while Fig. 6b shows the lower
approximation with boundaries in gray color.
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Fig. 3. School Buses data set: (a) Normalized data set, (b) testing subset with added temporal outliers highlighted in gray color.

Fig. 4. (a) Intermediate step: lower approx, (b) Intermediate step: Lower Approx U boundary, (c) Last-1 Step: Lower approx.

Fig. 5. (a) Last-1 step: lower Approx U boundary, (b) last step: lower approx, (c) last step: lower Approx U boundary.



6.1.3 Rough Outlier Set Extraction—Spatial Rough

Outlier Set Extraction from the Kernel Set

The section reports the tests aimed to demonstrate the use
of the Kernel Set. This set is a selected subset, able to
describe the original data set both in terms of data structure
and in terms of obtained results. In particular, we want to
show the advantages of using this set and the benefits of
considering it. To this aim, we show the rough outlier set
extracted by the universe U and the rough outlier set
extracted by the ernel set. The results show the advantages
of considering this set. Fig. 6c shows the Kernel set of
School Buses data set. Starting from the Kernel Set, the
rough outlier set is built by our approach ROSE. Let be
B � A constituted by the spatial attributes, i.e., ðx; yÞ.
Selecting only spatial components, the results of last
iteration of the test of spatial rough outlier set extraction
from the Kernel set is reported. Fig. 7a shows the lower
approximation at the last iteration, while Fig. 7b shows the
lower approximation with boundaries in gray color. Thus,
we compare these results with the last test of rough outlier
set extraction from the entire Universe U , shown in Fig. 5c.

Comparing Figs. 5c and 7b, we can appreciate that the
results are quite similar with an interesting computational

benefit coming from considering the Kernel set instead of

the entire universe U .

6.1.4 Quantitative Measures and Indices

In this section, we use performance indices as introduced
by Maji and Pal in [35] such as � index, � index, and �

index, to evaluate the performance of our algorithm

compared with Hard C-Means and with other rough-fuzzy

clustering algorithms, incorporating the concepts of rough

sets. So, the algorithms adopted for comparison are: Hard

C-Means, RFCM—Rough Fuzzy C-Means, RPCM—Rough
Possibilistic C-Means, RFPCM—Rough Fuzzy Possibilistic

C-Means. To analyze the performance of our proposed

algorithm, tests have been performed on the School Buses
data set. Figs. 8a and 8b show the clusters computed by

Hard C-Means clustering algorithm (number of clusters set

to 2) in spatial and spatiotemporal outlier detection,
respectively. Figs. 8c and 8d and Fig. 9 show the results

of each rough-fuzzy algorithm in spatial outlier detection.
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Fig. 6. (a) Last step: lower approx, (b) Last step: lower Approx U boundary, (c) School Buses data set: its Kernel set.

Fig. 7. ROSE results from Kernel set of School Buses data set—last step: (a) lower approx, (b) lower Approx U boundary.

Fig. 8. Hard C-Means Clusters Results: (a) spatial outlier detection, (b) spatiotemporal outlier detection—spatial outlier detection: (c) RPCM clusters
results, (d) RPCM clusters results with boundary.



In Figs. 9a and 9c, the two clusters are drawn with gray and
black colors after the assignment of the boundary to
clusters, while in the Figs. 9b and 9d the boundaries
(before the assignment) are drawn with light gray color.

Figs. 10 and 11 show the results of rough-fuzzy
algorithms in spatiotemporal outlier detection. The para-
meters have been set as follows: c ¼ 2 (inlier and outlier
cluster), ! and ~! are equal to 0.5 to give the same
importance to the lower approximation and to the
boundary. Several runs have been done with different
initializations and different parameters, related to initial
centroid choice. These parameters have been maintained
constant across all runs. The tests show that the best results
are obtained for particular choices of initial centroids rather
than for random choices of initial centroids. So, we report

only the final prototypes of the best solution. Tables 1 and 2
report the best results obtained using different algorithms
for c ¼ 2 in case of the same choice of initial centroids for
HCM, RFCM, RPCM, and RFPCM. Tables 1 and 2 compare
the performance of these different rough-fuzzy clustering
algorithms with respect to �, �, � in spatial and spatio-
temporal outlier detection, respectively. The results re-
ported in Tables 1 and 2 establish the fact that although the
hybridization versions of c-means algorithm were not
designed as outlier detectors, they generate good proto-
types for c ¼ 2. In spatial outlier detection, the RFPCM
provides the best results as shown in Fig. 9; the results of
other two versions of rough clustering are quite similar to
that of the RFPCM, while in spatiotemporal outlier
detection, the RPCM outperforms them as shown in
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Fig. 9. Spatial outlier detection: (a) RFCM clusters results, (b) RFCM clusters results with boundary, (c) RFPCM clusters results, (d) RFPCM clusters
results with boundary.

Fig. 10. ST outlier detection: (a) RPCM clusters results, (b) RPCM clusters results with boundary, (c) RFCM clusters results.

Fig. 11. ST outlier detection: (a) RFCM clusters results with boundary, (b) RFPCM clusters results, (c) RFPCM clusters results with boundary.

TABLE 1
Spatial Outlier Detection—Quantitative Evaluation of Algorithms—Chosen Initial Centroids



Fig. 10. The proposed ROSE algorithm performs better than

HCM, RFCM, RPCM, and RFPCM algorithms, both in terms

of some qualitative measures and in terms of outliers

detected, as shown in Figs. 6a and 6b.

6.2 Wisconsin Breast Cancer Data Set

For the second test, the real-life data set, named Wisconsin

Breast Cancer [8] is used. The data set is publicly available

on UCI machine learning repository and consists of

699 instances with nine continuous attributes. To compare

our results, the experimental technique of Harkins et al. [23]

by removing some malignant instances to form a very

unbalanced distribution has been employed. The resultant

data set had 483 instances (39 (8 percent) malignant and 444

(92 percent) benign instances). The nine continuous

attributes are not transformed into categorical attributes.

6.2.1 Results and Comparison

To demonstrate the performance of our approach against

traditional distance-based method (DIS), Neighborhood

outlier detection algorithm (NED) [16], KNN algorithm

[43], sequence-based outlier detection algorithm (SEQ) [28],

RNN-based outlier detection method, all the other results

about the Coverage (ratio of the number of rare classes

Included to the number of objects in U belonging to that

class) on this data set can be found in the work of Harkins

et al. [23] and Willams et al. [51]. Our results have been

shown in Table 3 in the two related columns. For almost

all considered Top Ratio values, ROSE performance,

considering just the lower approximation, is higher than

other methods and only sometimes equal to them. Indeed,

the l.a. results go under SEQ, DIS, and RNN only for Top

Ratio equal to 14 percent. Instead, considering the upper

approximation, i.e., the rough set contribution, the results
are always higher or at least equal to all the other methods.

6.3 Grand St. Bernard WSN Data Set

Finally, our method has been also tested on a publicly
available WSN data set named the Grand St. Bernard [26].
This data set has been collected by a multihop wireless
sensor network, deployed at the Grand St. Bernard pass,
located between Switzerland and Italy running northeast-
southwest through the Valais Alps. The deployment
consists of 23 sensor nodes, measuring meteorological
characteristics of the environment, during a period of two
months (September-October 2007) with the sampling
frequency of two minutes. The nodes are grouped in two
clusters: a small cluster consists of five nodes and a big
cluster consists of 18 nodes.

6.3.1 Results and Comparison

This spatiotemporal data set, as most of spatiotemporal data
set, is not provided by a ground truth file. The methods
TOD, SOD, POD, due to Zhang et al. [56], use this data set
labeled with three different methods, showing the different
results on the basis of the three different techniques. The
tests have been executed on the 30th of September 2007
(06:00-14:00) and on the small cluster of five station (nodes:
25, 28, 29, 31, 32). The ambient temperature is the analyzed
feature for each station. For temporal labeling, it was
necessary to eliminate the dependency of the spatial
domain, considering each sensor at a time. On the contrary
for spatial labeling, all sensors (belonging to the cluster)
have been considered at the same time. Table 4 shows the
ROSE results (ROSES and ROSET indicate the ROSE
running for spatial/temporal outlier detection, respectively)
and the best tradeoff between DR percent and FPR of the
reported results for Zhang’s TOD, SOD, POD. Concerning
the temporal outlier detection, ROSET Upp works always
better than or comparable with TOD with a negligible
percentage of false positives; even ROSET Low works
better than TOD on two of the three labeling techniques.
Concerning the spatial outlier detection, ROSES Upp and
even ROSES Low work always better than POD with a
negligible percentage of false positives on all labeling
techniques; ROSES Upp and even ROSES Low work
highly better than SOD with a negligible percentage of false
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TABLE 3
ROSE Results (Lower/Upper Approx): Comparison on Wisconsin Breast Cancer Data Set

TABLE 2
Spatiotemporal Outlier Detection—Quantitative Evaluation of

Algorithms—Chosen Initial Centroids



positives on running average technique and in a bit lower
or comparable way than SOD on the other two labeling
techniques. Globally, the achieved ROSE results outperform
the compared state-of-the-art techniques on this spatiotem-
poral data set.

6.4 Kernel Set Dimension

Experimental computations, about the dimension reduction
between four analyzed data sets and their kernel sets, have
been widely executed. The kernel sets dimensions, reported
in the Table 5 are the average dimensions on 10 executions,
varying the input parameters of the ROSE algorithm. The
computed data provide an average value of reduction
percentage equal to 46 percent. The analyzed data sets are
the following: School Buses, Wisconsin Breast Cancer
(original version), Wisconsin Breast Cancer (unbalanced
version), and Grand St. Bernard. This reduction signifi-
cantly drops down the algorithm time complexity and,
hence, its computational cost.

6.5 Sensitivity Analysis of Input Parameters

This section ends this evaluation section and is intended to
conduct a sensitivity analysis about the input parameters k

and n of the algorithm to evaluate the algorithm behavior.

The comparison have been done on the Wisconsin Breast

Cancer Data Set doing several different combinations of k

and n parameters. In particular, the n and k parameters

have been chosen in the following way: 1) keeping the value

of n fixed (at 40, at 60) the value of k was varying at 1, 5, 9,

15, 25, 30, 45 and 2) keeping the value of k fixed (at 30, at 45)

the value of n was varying at 30, 40, 50, and 60. The results

have been shown in the following figures: the first couple of

Figs 12a and 12b shows the accuracy curves for k ¼ 45 and

k ¼ 30 varying n; the second couple of Figs. 13a and 13b

shows the accuracy curves for n ¼ 40 and n ¼ 60 varying k.

Then, the Figs. 12c and 12d and the Figs. 13c and 13d show

the false alarm probability curves for k ¼ 45 and k ¼ 30

varying n and those for n ¼ 40 and n ¼ 60 varying k,

respectively. For n ¼ 50 and k ¼ 45, a reversal trend

between lower and upper approximation as for n ¼ 40

and a bit lower accuracy for n ¼ 50 respect to n ¼ 40 clearly

appear. Hence, increasing too much the number n of

outliers to be searched not surely improve the results. A

zero false alarm probability has been reported in both cases

for k ¼ 45.
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TABLE 5
Kernel Set Dimension Computation on Different Data Sets

Fig. 12. Wisconsin Breast Cancer data set—for two fixed k values: (a) Accuracy: lower approximation, (b) Accuracy: upper approximation, (c) False
Alarm Probability: lower approximation, (d) False Alarm Probability: upper approximation.

Fig. 13. Wisconsin Breast Cancer data set—for two fixed n values: (a) Accuracy: lower approximation, (b) Accuracy: upper approximation, (c) False
Alarm Probability: lower approximation, (d) False Alarm Probability: upper approximation.

TABLE 4
ROSE Results: Comparison on Grand St. Bernard Data Set—Spatial and Temporal Outliers



7 CONCLUSIONS

The manuscript extends outlier detection using a new
rough set approach to spatiotemporal data. Specifically, the
rough set-based outlier detection method has been theore-
tically grounded based on a definition of outlier set as
rough set. A remarkable note should be made for the
definition of a new set, called kernel set, that has been
demonstrated to be able to generate the “same” output
results in terms of rough outlier set with time computa-
tional benefits. The experimental results on three real-world
data sets prove that the performance of ROSE in detecting
outliers are superior when compared to several other
methods. On the real-world School Buses data set, ROSE
has been compared with C-Means clustering algorithm
and other rough-fuzzy clustering algorithms (Rough Fuzzy
C-Means, Rough Possibilistic C-Means, Rough Fuzzy
Possibilistic C-Means), incorporating the concepts of rough
sets, producing reasonable results both in terms of
quantitative and qualitative standpoints. On the benchmark
Wisconsin Breast Cancer data set, ROSE has been also
compared with several state-of-the-art outlier detection
methods, also rough-oriented, for general domain (SEQ,
DIS, NED, KNN, RNN), demonstrating higher, and just
sometimes comparable, performance. Another comparison
has been made on the WSN Grand ST. Bernard data set with
spatiotemporal methods (Zhang’s TOD, SOD, POD) that
use the same data set, demonstrating the ROSE superiority
even in this case. The approach is computationally less
intensive compared with these approaches. The ROSE
algorithm appear to consistently outperform other rough
and not rough approaches in medium to large problem
settings, showing to be able to do well also on data sets of
varying sizes. Since spatiotemporal outlier detection might
turn out to be useful in many different research fields, we
hope that this work will spark further interest in such
problems that are challenging and relatively unexplored.
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